
Light Field Photography for CGI/Live Action Video Integration

Matt Lathrop
Stanford University

Department of Computer Science
mlathrop@stanford.edu

Keenan Molner
Stanford University

Department of Electrical Engineering
kmolner@stanford.edu

Abstract

To separate out objects in a live action video sequence,
an artist must step through the footage, frame by frame,
and rotoscope out the occluding object from the background
where a 3D computer generated graphic is to be inserted.
This slow and expensive process can be remedied with the
use of light field photography to capture depth information
with every frame of film. These depth maps can be applied
as a texture offset to the film in a 3D rendering program and
virtual objects can be inserted into the scene at any partic-
ular depth, naturally occluding the background and being
occluded by objects in the foreground, without any roto-
scoping or manual editing. In this paper, we investigated
two different methods of lightfield photography to replace
rotoscoping.

1. Introduction

With incredible progress in computer graphics and 3D
rendering, many films undergo some form of editing to alter
the live action footage, from replacing the background, to
recoloring the light, to creating alternative worlds, or even
giving fantastic superpowers to the characters. Typically,
the use of a green screen allows digital artists to subtract
the green background out of a film frame and insert a new
background into the frame. Additionally, artists can easily
overlay textures or graphics in front of the live action. But
what happens when a virtual object needs to occlude some
figures in the scene and be occluded by others? How do
live action characters interact with virtual characters? Since
most films are only 2D projections of 3D scenes, it’s left up
to computer artists to step through each frame of the video
and create the depth maps that allow for the live action and
virtual occlusions, interactions, and dynamics.

1.1. Rotoscoping

Rotoscoping refers to the frame-by-frame identification
of objects in a scene. Once an artist has rotoscoped some

live action footage, virtual objects are able to be placed into
the scene and the artist can choose which objects should and
should not occlude the virtual object.

While the process sounds easy, it is actually a very time
consuming and difficult process. During the process an
artist goes frame-by-frame in a video and manually masks
by hand each object that will need to occlude a virtual ob-
ject. While there are tools such as tracking, edge detection,
and more to help artists, it is still a major expense to any
film which requires actors to interact with virtual objects.

After talking with several people within the film industry
we determined that the process of rotoscoping was one that
few would miss. The elimination of that process could pro-
vide as big of a jump in the quality of films as was achieved
by the first computer generated animations over hand drawn
animations.

1.2. Lightfields

A lightfield is a function that describes each point in the
2D projection of the scene as a ray with a spatial direction,
rather than just a single pixel in a 2D plane. By shifting the
perspective of the rays that describe the scene, the focus of
the image is retunable in post production. Additionally, by
examining how one object in the scene changes its perspec-
tive relative to the different viewpoints, the distance of that
object from other objects in the scene can be calculated.

Lightfields can be constructed with any combination of
2D images that looks at the same scene from multiple view-
points. This can either be a result of a 2D sensor with an
array of lenslets to map all rays from one perspective to
a specific region of the sensor, with other rays from other
perspectives mapped to other parts of the sensor. With
each frame captured, the depth of each frame can be recon-
structed from multiple viewpoints on the sensor. Typically,
images shot on a camera with a lenslet array are of lower
spatial resolution since one silicon sensor is used to capture
all the different perspectives of the scene. This method is
used in consumer lightfield cameras like the Lytro camera.

Alternatively, a 2D camera without a lenslet array can
photograph the same scene from multiple angles along the

X and Y directions by sliding the camera along a track in
that dimension. A lightfield can be constructed by combin-
ing these different perspectives on the same scene. Unlike
the lenslet approach, each perspective on the scene is cap-
tured individually, rather than all at once. If a character or
object in the live action film only appears in one perspec-
tive of the scene, they will not be accounted for in the light
field, as this method looks to compare images of the same
scene from multiple perspectives. This method does typi-
cally offer images with higher spatial resolutions since the
only one perspective is captured on the sensor at a single
instance, rather than the entire lightfield multiplexed across
the sensor.

2. Related Work
There have been numerous research efforts along the

path of combining live action video with virtual objects.
Since a highly detailed and accurate depth map is re-
quired to use in 3D compositing, many research papers have
looked at high resolution depth map construction.

A group from Disney Research [2] has published a pa-
per on calculating high resolution depth maps from multi-
ple perspectives on the same scene. Their method looks at
the edges of features of the scene extruded through cross
sectional slices of the light field image stack and calculat-
ing the slope of the features as they change in perspective.
The more change a pattern demonstrates across the bird’s
eye view of the lightfield stack, the greater distance the fea-
ture is from objects at the center of the stack. Both an ob-
ject that lies very close and very far from the center show
great change in distance across the lightfield stack, but in
opposite directions. By calculating the slope of these lines,
the relative depth of one object from another can be ex-
trapolated. Additionally, Disneys method starts by exam-
ining areas with highest spatial frequency and then explores
larger, more homogeneous regions in a fine-to-coarse man-
ner, rather than many other image processing techniques
that evaluate from coarse-to-fine, smoothing along the way
and reducing the resolvability of fine details.

The Fraunhofer Institute [3] constructed a high spatial
resolution camera array to capture lightfields in their pa-
per Multi-camera system for depth based visual effects and
compositing. They used an array of cameras along with
a main camera that used a beam splitter to allow both cam-
eras to see the scene from the same angle. While the images
captured provided nice high resolution images, their rig was
large and their depth estimation based on a limited number
a viewpoints.

The current standard for consumer lighfield cameras is
the Lytro Camera, which uses a single sensor and a lenslet
array to multiplex the perspectives across the sensor [4].
This camera runs a proprietary depth calculation algorithm
that allows for depth map creation and image refocusing of

each frame. A camera like this, but with a higher pixel den-
sity and faster readout times could be used to film a scene
and add in composited effects, in post. Unfortunately, in
practice, we found the calculated depth maps from the Lytro
camera to be underwhelming and often make gross over-
simplifications of occlusions and regions with high spatial
frequencies. While the hardware is compact, the image res-
olution is low, since only a single sensor is used and the
algorithm for depth calculation is too sloppy than whats re-
quired for film compositing.

3. Project Overview
For our project, we implemented the fine to coarse depth

map algorithm described in the Disney Research paper in
MATLAB. With this algorithm, we attempted to reconstruct
depth maps from the data set that accompanied Disney’s
paper. We then imported these depth maps into a 3D com-
positing software and mapped the depth map to the texture
displacement map of the the video frame and inserted a 3D
virtual object into the scene. For comparison, we also con-
structed a camera track of our own and shot an image se-
quence with a Lytro camera. Like before, we composited
the depth map that came out of the Lytro camera onto the
video footage and inserted a 3D object into the scene.

3.1. Depth Algorithm Implementation

The depth algorithm developed by Disney [2] begins
with still images of the same scene taken from multiple an-
gles along the x-axis. The image sequence is then stacked
together in the z-direction and slices are cut out in the y-
direction to form epipolar images from the x-z plane, show-
ing the change of velocity of a particular object by the slope
of the line it forms in the epipolar plane. The algorithm
compares the radiance of neighboring pixels to find a slope
line that best approximates the edges of the epipolar image.
This slope can be turned into a depth in the z-direction from
the relationship m =

z

fb
where m is the slope of the line

in the epipolar plane, z is the distance form the object to
the center of the image stack, f is the focal length of the
camera, and b is the disparity between two images in the
sequence. This process is illustrated in Figure 1

The algorithm calculates all the depths it can make a
strong estimation for in the first iteration, then downsam-
ples the image in the x and y directions and begins the
process again. As we downsample from iteration to iter-
ation, all regions of low contrast begin to look like edges
across the epipolar slices and can be approximated with the
depth algorithm above. Once depth values are assigned, the
downsampled image is upsampled and these depth values
are propagated along all images in the scene. They are then
un-flagged and will not be recalculated in subsequent down-
sampling and estimations.

Figure 1. Disney Process

For each iteration, we calculate all points in the epipo-
lar plane above a specific threshold that could be edges.
This edge confidence matrix for each epipolar slice is rep-
resented by

Ce(x, z) =
∑

x′∈N(x,z)

‖E(x, z)− E(x′, z)‖2

where N(x, z) is a small, 1 dimensional window in the
plane E around a point (x, z).

We then try to calculate a depth for all edges in this con-
fidence matrix by varying a hypothetical disparity (slope)
across all points along the center of the epipolar plane
and calculate a score for how well this hypothetical depth
fits with the image by summing radiance values along this
line. Disparity guesses with higher radiance values are more
likely to represent constant edges in the epipolar plane. Ra-
diance values along a line are the average of the Red, Green,
and Blue channels at a pixel represented by the equation

R(x, d) = {E(x + (ẑ − z)d, z)|z = 1, . . . , n}

where n is the number of images in stack and d is the hy-
pothetical disparity. We calculate a depth score S(x, d) for
each estimation with the equation

S(x, d) =
1

|R(x, d)|
∑

r∈R(x,d)

K(r − r̂)

where r is the radiance at that specific point in R(x, d) and
K(x) is the kernel 1 − ‖x/h‖2 if ‖x/h‖ ≤ 1 and 0 oth-
erwise. h is a threshold for us to vary the confidence - we
used an h of .02 for our algorithm implementation. The
depth we assign to the pixel is the value with the highest
score in S(x, d) based on the depth estimate:

D(x, ẑ) = arg max
d

S(x, d)

Our confidence in this depth estimation is calculated by

Cd(x, ẑ) = Ce(x, ẑ)‖Smax − S̄‖

where Smax is the maxd S(x, d) and S̄ =
∑

d S(x, d).

To eliminate outliers, we replace our depth estimate
D(x, ẑ) with the median value of the set formed by a
small window across neighboring epipolar slices in the y-
direction. Once we have filled in a estimated depth for a
specific pixel in the x and y directions across the z-stack,
we un-flag these pixels, smooth our image, downsample,
and rerun our algorithm. In this next iteraiton, we will only
be making estimates for the flagged pixels without depths,
which will increase our computational speed.

When this iteration returns a value, we upsample this
image back the original image size and fill in all miss-
ing pixel information that this iteration could provide. We
continue this downsample-calculate-upsample process until
we’ve downsampled to an image with less than 10px in a
given direction. At this point, we fill in all missing values
with the depths calculated at this lowest sample size.

Finally, we apply a 3x3 median filter to all x-y images to
remove any speckle. At this point, we have now approxi-
mated a depth value for every pixel in the x-y plane across
all images in the z-direction.

3.2. Image Capture

We constructed a 1m long linear track and mounted the
Lytro camera to the track. With this linear track, we shot
a 100 frame film of stationary objects moving across a ta-
ble. With some objects near to the camera and others further
from the camera, we observed the occlusion of the far ob-
jects by the near object. The objects had both low and high
spatial frequencies, used in the accuracy comparison of the
depth maps from the Lytro camera algorithm vs. the Disney
algorithm.

Figure 2. Camera Track with Lytro Camera

3.3. Composition

The Autodesk Matchmove software package was used
to analyze the video sequences filmed with the live action
camera and recreate a virtual camera that followed the same
motion path as the camera used to film the scene. This vir-
tual camera was then focused on a 2D rectangular plane that
played back the live action footage. The virtual camera and
motion path were then exported to Autodesk Maya for 3D
compositing. The depth maps calculated by both the Disney
algorithm and by the Lytro algorithm were imported and the
depth value at each pixel of the image sequence was used
as the displacement texture applied to the rectangular plane
showing the live action film. The live action frame was con-
verted from a single rectangle to a spatial array of polygons
with the displacement texture generated by the depth map
[1].

Maya currently lacks the ability to render polygon tex-
tures based on changing displacement textures from frame
to frame, which unfortunately resulted in the need for man-
ual pipelining and re-rendering for each frame of the film.
Methods to improve the implementation of the depth dis-
placements are discussed in later sections.

Next, we created a spherical object in Maya and colored
it and sized it appropriately for the scene. By looking at the
top view of the displacement map, we moved the sphere
along the Z depth axis until it was in the middle of the
scene, occluding background objects and occluded by the
foreground.

With the virtual camera set to film the textured and poly-
gon version of the frame, rather than the 2D rectangular
projection, we rendered out the image sequences from the
Disney and Lytro datasets. We did not move or change the
depth of the sphere object from frame to frame, but rather
left the occlusions and depth displacements as a result of the
depth maps applied to the live action video sequence.

Figure 3. A perspective view of the depth map applied to the 2D
image sequence

4. Results

We were able to render a 3D composition for both depth
calculation methods. Our MATLAB implementation of the
Disney algorithm did not work as well as the original algo-
rithm created at Disney, but did pick up the most important
features of the images. With more time and some consulta-
tion with the original researchers, we are confident we could
recreate their image processing pipeline.

4.1. Disney Algorithm

The original algorithm was performed with 101
4080x2720 pixel RGB images and computed on the GPU
of a NVidia GTX 680 graphics card. The entire image
stack took Disney 9 minutes. Our non-optimized algo-
rithm running on the CPU took 8 hours and was run with
a downsampled image stack in the x and y directions to
2040x1360. While we found that higher resolution images
did produce better depth maps, we were computationally
limited to downsampled images.

While our algorithm successfully constructed depth
maps for areas with lots of detail and high spatial frequency,
we were not able to accurately calculate the depths for large
homogeneous regions. While the algorithm is supposed to
downsample the image until all homogeneous regions look
like edges, calculate a depth, and fill in any missing depth
values from previous iterations, we were not able to propa-
gate our estimated depths from the final iteration all the way
back to the full resolution image.

We rendered our 3D composition using the depth maps
provided in the Disney dataset. The results are show in Fig-
ure 4.

Figure 4. Disney implementation v. our implementation

4.2. Lytro Algorithm

The Lytro camera provided a depth map for each frame
of the video sequence. However, since no data from one
frame is propagated to surrounding frames, the distances
from object to object were all relative. As a result, the
depth value from the camera to a single point in the scene
would change from frame to frame. We corrected for this
by implementing a script that normalized out all the values
to a specific point in the live action sequence, such that all
depths were now relative to this point.

5. Discussion
Each mode of capturing a depth image and using this

information to replace rotoscopting offers its unique advan-
tages and disadvantages. While we were able to construct
3D scenes using both depth maps, neither imaging modality
provides a perfect depth map to use in all cases.

Since the implementation of the Disney Algorithm cal-
culates the distances from the camera to the scene by com-
paring the edges seen in the same scene from multiple per-
spectives, the algorithm works best for static scenes. The
depth map for the frame uses the data from all other frames
captured. A stronger coherent signal from frame to frame,
results in a depth map of more confidence and higher de-
tail. We found 2D images with spatial resolutions allowed
for better, more detailed depth maps than down sampled
versions of the same scene. Additionally, the more im-
ages in the sequence, the more perspectives are incorpo-
rated into the lightfield of the same scene. When we varied
the number of images we incorporated in our depth algo-
rithm, we found that more images resulted in more detailed
depth maps.

While this algorithm stands out for capturing the high
frequency, nuanced scenic details, like the branches of a tree
or the ironwork on the fence, shown in Figure 4, the algo-
rithm does not work well if the details of the scene change
from frame to frame, as they would if we were filming a
person interacting with the world. An object that appears
only briefly in the image sequence is largely disregarded by
the depth calculation algorithm, since the edges of this ob-
ject will only be present in a few frames of the sequence.
The algorithm is looking for consistent edges across all se-
quences and the object’s edges will be ignored. This type of

algorithm is best when constructing a 3D composition in a
mostly static scene.

The image sequence in Figure 5 shows the final compo-
sition with a 3D object inserted into the live action image
stack. Note the high levels of detail in the occlusions of the
sphere. A short image sequence shown as a film can be seen
at this website: http://makeagif.com/i/WC8tLT.

The Lytro camera captures a depth map for each frame of
the video by multiplexing the different perspectives across
the same sensor. Each perspective on its own has lower
spatial dimensions than any of the frames taken by the 2D
camera and processed with the Disney algorithm. Since the
depth map algorithm of the Lytro camera is proprietary, we
were not able to compare the depthmap of a down sampled
image to the depthmap from a standard image.

It is very obvious that the the small details and high fre-
quency content captured in the RGB image is lost in the
depth maps. We believe this is a result of both spatially
smaller 2D perspectives to examine for edge coherence and
fewer perspectives of the same scene to compare across.
However, as a tradeoff, the Lytro camera provides a depth
map for frames of the sequence with details changing from
frame to frame. Unlike the Disney algorithm, objects that
change from to frame are not ignored.

While this algorithm stands out for capturing moving ob-
jects across multiple frames, the algorithm does not work in
areas of high detail.

The image sequence in Figure 6 shows the final com-
position with a 3D object inserted into the live action im-
age stack taken with the Lytro camera. Note the lack
of detail in regions of sharp contrast. A short image se-
quence shown as a film can be seen at this website: http:
//makeagif.com/i/ANGyF_.

6. Future Work
In this paper, we’ve demonstrated the potential for light-

field photography to make a large shift to the way the film
industry edits films for 3D rendering by effectively elimi-
nating the need for rotoscoping. However, there is still a
great deal of work to be done in both the software and hard-
ware used to capture the image sequences.

The long image tracked camera with higher resolution
perspectives offered the opportunity for high spatial recon-
struction. The Lytro camera allowed for frame by frame
depth maps, but with poor depth map quality and low reso-
lution. In order for hardware to capture data to calculate an
accurate depth map for each frame, the size of the cameras
must increase to accommodate for both of these imaging
modalities within the same camera. A larger camera sensor
with a lenslet array would offer a wider set of perspectives
from which to calculate the depth map off of. Additionally,
a larger sensor would allow for higher resolution sensor ar-
rays under each of the lenslets. We found the depth algo-

http://makeagif.com/i/WC8tLT
http://makeagif.com/i/ANGyF_
http://makeagif.com/i/ANGyF_

Figure 5. Disney stack, post compositing

Figure 6. Lytro stack, post compositing

rithms to work better at higher spatial resolutions and with
more perspectives on the same scene, both of which would
be offered by a larger camera.

When scaling this imaging system larger, more and more
data is created for each individual frame. The readout speed
of the camera must be increased to maintain a frame rate
constraints and larger and faster data storage must be avail-
able to meet the growing demand for such data intense im-
age capture.

Software to construct depth maps must also be improved.
The Disney algorithm took 9 minutes to run on a GPU. As
the size of the image sensors increase, the time it takes to
calculate the depth increases exponentially.

The software used for 3D compositing must also provide
better support for depth maps, or plugins must be devel-
oped. To construct the frames of the videos in this paper, we
were required to calculate a polygon mesh with the depth
map and apply the RGB video to the polygon mesh. This
process of converting a depth map to polygons was not eas-
ily automatable, nor was it available for the types of planes
showing the image sequence that the virtual cameras are fo-
cused upon. Better support for temporally shifting depth
maps and their rendering in polygon form must be avail-
able in the 3D compositing software before this technique
becomes commonplace.

This technique shows a great deal of promise and we
look forward to seeing the evolution of hardware and soft-
ware towards the goal of lightfield photography for cinema
and virtual/live action video integration.

7. Special Thanks
We thank Prof. Gordon Wetzstein and Orly Liba for

their support with this project. Additionally, we thank Jon
Karafin from Lytro and Changil Kim from Dinsey Reaserch.

References
[1] J. Grant. Control displacement maps in maya - displacement

mapping.
[2] C. Kim, H. Zimmer, Y. Pritch, A. Sorkine-Hornung, and M. H.

Gross. Scene reconstruction from high spatio-angular resolu-
tion light fields. ACM Trans. Graph., 32(4):73–1, 2013.

[3] M. Ziegler, A. Engelhardt, S. Müller, J. Keinert, F. Zilly,
S. Foessel, and K. Schmid. Multi-camera system for depth
based visual effects and compositing. In Proceedings of
the 12th European Conference on Visual Media Production,
page 3. ACM, 2015.

[4] F. Zilly, M. Schöberl, P. Schäfer, M. Ziegler, J. Keinert, and
S. Foessel. Light-field acquisition system allowing camera
viewpoint and depth of field compositing in post-production.
2013.

	. Introduction
	. Rotoscoping
	. Lightfields

	. Related Work
	. Project Overview
	. Depth Algorithm Implementation
	. Image Capture
	. Composition

	. Results
	. Disney Algorithm
	. Lytro Algorithm

	. Discussion
	. Future Work
	. Special Thanks

